Bright red phosphor is based on silicon quantum dots

Feb. 8, 2012
A group at the University of Washington has demonstrated phosphors based on silicon (Si) quantum dots (QDs) that are efficient emitters (with an external quantum efficiency up to 15.9%), can be made to have a peak wavelength that falls anywhere from the near-IR to the green, and can be fabricated cheaply.

A group at the University of Washington (Seattle, WA) has demonstrated phosphors based on silicon (Si) quantum dots (QDs) that are efficient emitters (with an external quantum efficiency up to 15.9%), can be made to have a peak wavelength that falls anywhere from the near-IR to the green, and can be fabricated cheaply. The phosphors, which are stable at room temperature due to an oxide passivating shell, are nontoxic—unlike otherwise useful conventional QD phosphors based on II-VI semiconductors like cadmium selenide, cadmium zinc selenide, or cadmium zinc sulfide.

Electrochemical etching of a Si wafer produces Si microparticles with attached QDs; these particles are dispersed in ethanol and can be made to react with alkoxysilanes to form a suspension in nonpolar solvents for further processing. The red-emitting version of the phosphor has a broadband excitation band with a 70% excitation efficiency between 345 and 475 nm—a good match for blue- and violet-emitting gallium nitride-based LEDs (the figure shows excitation at 365 nm). The red phosphor in solvent can be formed into thin films by drop-casting or spin-coating. Scanning-electron micrographs of the films show micron- and submicron-sized clusters. Such red phosphors are needed to improve the color rendition of white LEDs. Contact Chang-Ching Tu at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!