OLED-style emitter has single-photon 'pixels'

March 6, 2012
Unlike the broadband, diffuse emission from organic light-emitting diode (OLED) displays, a new type of emitter made using standard OLED manufacturing processes and materials releases only distributed single photons upon electrical excitation of the active layer.

Unlike the broadband, diffuse emission from organic light-emitting diode (OLED) displays, a new type of emitter made using standard OLED manufacturing processes and materials releases only distributed single photons upon electrical excitation of the active layer.1 Designed by researchers at the University of Stuttgart (Stuttgart, Germany), the University of Ulm (Ulm, Germany), and the University of Würzburg and ZAE Bayern (both in Würzburg, Germany), the single-photon emitter also operates at room temperature (unlike semiconductor quantum dots), offering numerous opportunities for applications in secure communications and cryptography.

Because fluorescent molecules embedded in polymer or photonic-crystal matrices have inefficient electroluminescent properties, the researchers chose an iridium (Ir)-based organometallic complex—specifically, Ir(piq)3 (tris(1-phenylisoquinoline)iridium) molecules—that emits single photons at 613 nm with almost 100% internal quantum efficiency via phosphorescence in a polymer matrix.

The emission is successful based on two key fabrication steps: First, the red-light-emitting molecules are dispersed evenly in a blue-light-emitting host polymer; and second, a low-work-function barium metal is used as the cathode to ensure adequate charge-carrier densities suitable for electron injection and, hence, electrically driven single-photon emission at room temperature. Photon-correlation measurements confirm single-photon emission from the distributed Ir-based molecules with lifetime values ranging from 1.0 to 1.4 μs using a 12 V input. Contact Maximilian Nothaft at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!