DOEs improve laser metal deposition

Jan. 1, 2009
Laser metal deposition (also called laser additive welding or laser cladding) is becoming more common for such industrial applications as repair of damaged or worn turbine blades.

Laser metal deposition (also called laser additive welding or laser cladding) is becoming more common for such industrial applications as repair of damaged or worn turbine blades. However, circular laser-beam profiles can cause uneven and excessive heating of the metal at the center of the beam as it scans across the work surface, resulting in increased porosity, migration of constituent alloy materials, large grain growth, and residual stress. To combat these undesirable effects, researchers at Loughborough University (Loughborough, England) have demonstrated the use of computer-generated diffractive optical elements (DOEs) to customize laser-beam intensity profiles and reduce the temperature gradient across a metal work surface to eliminate excessive heating.

Click here to enlarge image

Deposition experiments were completed using a standard 1.2 kW CO2 gas laser with a Gaussian TEM00 beam profile (top) and alternatively, by reflecting the standard beam profile off of a customized “Rugby Posts”-shape DOE designed to provide more consistent heating across the irradiated region (bottom). Analysis of the two deposition regions via electron backscatter diffraction–a process in which electrons strike the crystalline planes of a sample placed in a scanning electron microscope chamber to image its internal structure as the electrons fluoresce on a phosphor screen–show a 50% reduction in grain sizes, leading to a deposition with improved mechanical properties on the DOE-deposited metal. Contact Matt Gibson at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!