Blue semipolar GaN LEDs now comparable to conventional c-plane devices

Nov. 1, 2010
Researchers at the University of California, Santa Barbara (UCSB) and Mitsubishi Chemical Corporation (Ibaraki, Japan) have developed a backside-roughening technique for blue semipolar gallium-nitride (GaN)-based LEDs that makes them comparable to commercial wurtzite c-plane LEDs in terms of both performance and manufacturing methods.

Researchers at the University of California, Santa Barbara (UCSB) and Mitsubishi Chemical Corporation (Ibaraki, Japan) have developed a backside-roughening technique for blue semipolar gallium-nitride (GaN)-based LEDs that makes them comparable to commercial wurtzite c-plane LEDs in terms of both performance and manufacturing methods.

Semipolar and nonpolar GaN LEDs, while theoretically having higher optical gain than c-plane devices, have poor light-extraction efficiency caused by the low critical angle of the light escape cone (23°) due to the high refractive-index (n) difference between GaN (n = 2.5) and air (n = 1) and the fact that surface-roughening techniques have not been deployed as they have for c-plane devices. Using an etching technique, the research team fabricated conical features with varying diameters and with different densities on the backside of GaN LEDs. Using both simulated and actual experiments, a 4 μm diameter conical pattern with a density of (2 × 106)/cm2 yielded an optimum output of 31.1 mW with an external quantum efficiency of 54.7%—comparable to the best commercial c-plane blue LED devices. Contact Yuji Zhao at [email protected].

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!