Extremely broadband quantum-dot LEDs realized via rapid thermal annealing

July 1, 2008
Researchers at the University of Sheffield (Sheffield, England) and the Chinese Academy of Sciences (Beijing) have reported the first demonstration of ultrabroadband superluminescent light-emitting diodes (SLEDs) with a multiple quantum-dot (QD) layer structure.

Researchers at the University of Sheffield (Sheffield, England) and the Chinese Academy of Sciences (Beijing) have reported the first demonstration of ultrabroadband superluminescent light-emitting diodes (SLEDs) with a multiple quantum-dot (QD) layer structure. The V-groove QD-SLED structure, fabricated via a rapid thermal annealing process, is based on a typical p-i-n configuration, beginning with a silicon-doped (100) gallium arsenide (GaAs) substrate. Five layers of indium arsenide (InAs) QDs make up the active region, in between a 1 µm cladding layer of n-Al0.5Ga0.5As and another 1 µm cladding layer of p-Al0.5Ga 0.5As.

After a 750°C rapid thermal annealing process, the electroluminescent emission spectra of three QD-SLEDs injected with 1200 mA of current exhibits a 3 dB bandwidth spanning 146 nm, from 892 to 1038 nm. The blueshifting of the emission peak to 984 nm is attributed mainly to state filling and higher-energy QD- and quantum-well-like states. The obtained continuous-wave output power at room temperature was as high as 15 mW. Broadband superluminescent sources have potential in numerous applications such as spectrum-sliced wavelength-division-multiplexing systems, fiber gyroscopes, and optical-coherence tomography. Contact Ziyang Zhang at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!