Laser-heated nanowires produce microscale nuclear fusion with record efficiency

April 1, 2018
Using a compact “homebuilt” ultrafast laser to heat arrays of ordered nanowires, scientists have demonstrated microscale nuclear fusion in the lab.

Using a compact “homebuilt” ultrafast laser to heat arrays of ordered nanowires, scientists at Colorado State University (CSU; Fort Collins, CO) and collaborators have demonstrated microscale nuclear fusion in the lab. They have achieved record-setting efficiency for the generation of neutrons (which result from the fusion process). Laser-driven controlled fusion experiments are typically done via inertial confinement, for example, at the National Ignition Facility (NIF; Livermore, CA), requiring multi-hundred-million-dollar, multikilojoule lasers. Such experiments are geared either toward harnessing nuclear fusion for clean energy applications, or to materials studies. In contrast, the CSU-led team of students, research scientists, and collaborators work with an ultrafast tabletop laser.

Pulses with 60 fs duration, energies up to 1.65 J, and a center wavelength of 400 nm were produced, with the laser light focused with an f/1.7 parabolic mirror. The target was an array of 200- or 400-nm-diameter deuterated polyethylene (CD2) nanowires. The short pulses coupled very well to the volume deep within the nanowire array, turning a several-micron-deep layer of the CD2 into plasma and leading to deuteron-deuteron (D-D) fusion. The maximum number of neutrons per shot was about 3.6 × 106 for a laser pulse energy of 1.64 J, corresponding to 2.2 × 106 neutrons per joule. This is the largest fusion neutron yield obtained to date for joule-level laser pulse energies, the researchers say. In addition, this yield is about 500X higher than experiments that use conventional flat targets from the same material. Making fusion neutrons efficiently at a small scale could lead to advances in neutron-based imaging and neutron probes to gain insight on the structure and properties of materials. Reference: A. Curtis et al., Nat. Commun. (2018); doi:10.1038/s41467-018-03445-z.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!