Perovskite quantum dots are brighter, faster than other dot designs

Feb. 15, 2018
A team of researchers has made headway in understanding why quantum dots composed of cesium-lead-halide compounds are much brighter and radiate much faster than other engineered quantum dots.

Researchers from ETH Zurich, IBM Research Zurich, Empa (also in Zurich, Switzerland), and colleagues in America have made headway in understanding why quantum dots composed of cesium-lead-halide (CsPbX3) compounds are much brighter and radiate much faster than other engineered quantum dots.

At room temperature, most quantum dots emit light with a typical radiative decay time of 20 ns. However, CsPbX3 quantum dots emit light with a strongly accelerated radiative decay, both at room and cryogenic temperatures. To unveil the secret, the authors used experimental data obtained at the single-particle level, in combination with theoretical work led by Alexander Efros, a theoretical physicist at the Naval Research Laboratory (Washington, DC). They discovered that the emission originates from bright triplet states—no dark states were involved in the radiation process. Already, the dots are being explored for displays, light-emitting diodes, and for optical communications—the researchers say this quantum-dot breakthrough could enable the development of more efficient optoelectronic devices. Reference: M. A. Beckeret al., Nature, 553, 7687, 189–193 (Jan. 11, 2018).

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!