Diodes dominate laser applications

April 1, 2000
It was in 1962 - almost 40 years ago - that the earliest reports of laser action in a semiconductor material were received. The first commercially available semiconductor diode laser followed in the 1970s.

It was in 1962almost 40 years agothat the earliest reports of laser action in a semiconductor material were received. The first commercially available semiconductor diode laser followed in the 1970s. Subsequent development has brought longer lifetimes, more wavelengths, and across-the-board performance improvements; by 1999, according to this year's Annual Review and Forecast of the Laser Marketplace (see Laser Focus World; Jan. 00, p. 92), laser-diode revenues represented 64% of all lasers sold (up from 57% in 1996) and are projected to reach 69% this year. Furthermore, in terms of units sold, for the past several years these devices actually have accounted for about 99% of the total, which means most laser light is now produced directly or indirectly (via diode pumping) by semiconductor lasers. In fact, laser diodes have become so ubiquitous that almost no "traditional" laser application has escaped their influence, including some of the relatively high-power industrial ones. Given their importance, then, this month we introduce a new monthly series of tutorial-style articles by contributing editor Stephen J. Matthews that traces the development of these devices from their inception to the present day (see p. 81).

Matthews points out in his first article that the potential of semiconductor lasers for optical communications was recognized very early on and has driven much of the resulting development. The commercial introduction of vertical-cavity surface-emitting lasers (VCSELs) in 1996, for example, was made possible in part because of the high volumes associated with the telecom marketnow, though, other applications can reap the benefits of that work (see p. 131). And it is almost inevitable that, as the sophistication of all these devices increases, so too does the complexity of characterizing their performance (see p. 139). At about the same time as the first diode laser was introduced, charge-coupled-device (CCD) detectors also were emerging. Since those early days in 1969, CCDs have evolved from primarily a data-storage device to address a wide range of detector and imaging applications. And most recently, high-end CCD-based cameras are often intended to be application-specific (see p. 101).

Looking forward for a moment, this month's cover shows an optical waveguide created in a glass substrate using ultrafast laser pulses. Materials processing is an important emerging application for femtosecond lasers (see p. 73). Meanwhile, the amazing demand for telecom bandwidth has pushed fiber Bragg gratings to the forefront of wavelength-division-multiplexing components so the routine production of them is becoming an increasingly significant issue (see p. 107).

P.S. The Laser Marketplace Seminar/Europe will be held in Frankfurt, Germany, on Wednesday June 28, 2000. The agenda includes an extensive review of worldwide laser markets for 1999 and forecasts for 2000. For more information contact Sharon MacLeod at [email protected].

About the Author

Stephen G. Anderson | Director, Industry Development - SPIE

 Stephen Anderson is a photonics industry expert with an international background and has been actively involved with lasers and photonics for more than 30 years. As Director, Industry Development at SPIE – The international society for optics and photonics – he is responsible for tracking the photonics industry markets and technology to help define long-term strategy, while also facilitating development of SPIE’s industry activities. Before joining SPIE, Anderson was Associate Publisher and Editor in Chief of Laser Focus World and chaired the Lasers & Photonics Marketplace Seminar. Anderson also co-founded the BioOptics World brand. Anderson holds a chemistry degree from the University of York and an Executive MBA from Golden Gate University.    

Sponsored Recommendations

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Precision-Engineered Longpass Filters

Sept. 5, 2024
Discover our precision-engineered Longpass Filters, designed for high transmission and optimal wavelength separation. Perfect for fluorescence imaging, microscopy, and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!