Pulsed electric-discharge DF laser produces 4.95 J pulses

Jan. 14, 2013
Chinese scientists have modeled the nonchain deuterium fluoride laser and used the results to build a prototype laser with an optimized sulfur hexafluoride-to-deuterium (SF6 to D2) mixture ratio and output-mirror reflectivity of 10:1 and 30%, respectively.

The deuterium fluoride (DF) laser is most well-known in the form of high-powered military chemical lasers such as the US Navy’s Mid-Infrared Advanced Chemical Laser (MIRACL), which could emit up to 2.2 MW of continuous-wave power at 3.8 μm for a minute or so. However, much smaller-scale electrical-discharge DF lasers are possible; if average-power outputs of watts rather than megawatts are acceptable, these pulsed lasers come with advantages such as simplicity, safety, and operation without corrosive gases. So-called “nonchain” (lacking a chemical chain reaction) electrical-discharge DF lasers emit in the 3.6 to 4.2 μm range and have applications that include spectroscopy and laser ranging.

Scientists at the Chinese Academy of Sciences (Changchun, China) and the University of Chinese Academy of Sciences (Beijing, China) have modeled the nonchain DF laser and used the results to build a prototype laser with an optimized sulfur hexafluoride-to-deuterium (SF6 to D2) mixture ratio and output-mirror reflectivity of 10:1 and 30%, respectively. The model, which was based on laser rate equations theory, included 28 different reactions simulating chemical dissociation, pumping, de-excitation, and stimulated emission. The prototype comprised main electrodes, preionization pins, a rear mirror, an output mirror, a beamsplitter, a laser-energy meter, attenuators, a mercury cadmium telluride detector, and an oscilloscope. With a pulse duration of 148.8 ns, the prototype produced 4.95 J single pulses with a peak power of 33.27 MW. Contact Jijiang Xie at[email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!