Tiny IR laser holds promise as weapon against terror

Aug. 8, 2005
August 8, 2005, Evanston, IL--Researchers at Northwestern University's Center for Quantum Devices have demonstrated a specialized diode laser that holds promise as a weapon of defense in both civilian and military applications. Once optimized, the tiny laser could quickly detect explosives and chemical warfare agents (CWAs) early and warn against possible threats.

August 8, 2005, Evanston, IL--Researchers at Northwestern University's Center for Quantum Devices have demonstrated a specialized diode laser that holds promise as a weapon of defense in both civilian and military applications. Once optimized, the tiny laser could quickly detect explosives and chemical warfare agents (CWAs) early and warn against possible threats.

The Northwestern team, led by center director Manijeh Razeghi, became the first to create a quantum cascade laser (QCL) that can operate continuously at high power and at room temperature with an emission wavelength of 9.5 microns and a light output of greater than 100 milliwatts.

The challenge for researchers around the world has been to develop a portable laser that operates in the far-infrared (wavelengths of 8 to 12 microns). Every chemical has a unique "fingerprint" because it absorbs light of a specific frequency, and most CWAs fall in the 8 to 12 micron region.

"Our achievement is critical to building an extremely sensitive chemical detection system," said Razeghi, Walter P. Murphy Professor of Electrical and Computer Engineering. "One of the key elements in a successful system is the laser source. Both mid- and far-infrared diode lasers need to operate at room temperature, have high power -- greater than 100 milliwatts -- and be extremely small in order to keep the system portable. We have now demonstrated such a laser in the far-infrared wavelength range."

This research is part of a three-year program called Laser Photoacoustic Spectroscopy (LPAS) funded by the Defense Advanced Research Projects Agency (DARPA). The goal of the program is to develop a man-portable system that can warn against a large number of potential threats using mid- and far-infrared diode lasers. Once optimized, such lasers would be a very reliable means of detecting explosives and chemical warfare agents while distinguishing them from benign chemicals present in the atmosphere.

During the next two years Razeghi and her team will work to put together a detection system based on the center's far-infrared laser. The system will then be evaluated by DARPA for use by the military.

In 2003 the center was the first to demonstrate high-power mid-wavelength infrared continuous wave QCLs operating above room temperature. (Like the far infrared, standard diode lasers cannot access this mid-infrared range.) At present, individual devices with output powers of several hundred milliwatts have been demonstrated in the 3 to 5 micron wavelength range.

Sponsored Recommendations

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Precision-Engineered Longpass Filters

Sept. 5, 2024
Discover our precision-engineered Longpass Filters, designed for high transmission and optimal wavelength separation. Perfect for fluorescence imaging, microscopy, and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!