Picolight ships first 4-Gbps 1310-nm VCSEL transceivers

Dec. 9, 2005
December 9, 2005, Louisville, CO--Picolight announced that they are the first to ship 1310-nm vertical cavity surface-emitting laser (VCSEL) transceivers in a 4-Gbps triple-rate (1-, 2- and 4-Gbps) small form factor pluggable (SFP) configurations. With extended-reach capability and low power consumption, the new transceivers satisfy a broad range of short-to-medium distance applications including 4-Gbps Fibre Channel at 10 km for storage area networks (SANs).

December 9, 2005, Louisville, CO--Picolight announced that they are the first to ship 1310-nm vertical cavity surface-emitting laser (VCSEL) transceivers in a 4-Gbps triple-rate (1-, 2- and 4-Gbps) small form factor pluggable (SFP) configurations. With extended-reach capability and low power consumption, the new transceivers satisfy a broad range of short-to-medium distance applications including 4-Gbps Fibre Channel at 10 km for storage area networks (SANs).

Similar to 850nm VCSEL transceivers, 1310nm VCSEL transceivers have the potential to dominate short-to-medium distance single-mode fiber applications, displacing existing edge-emitting laser transceivers in high-bandwidth and high-density optical systems.

"Compared to competing technologies, our 4-Gbps SFP 1310-nm VCSELs deliver lower power consumption, lower electromagnetic interference (EMI) and lower heat generation, resulting in increased performance and reliability over singlemode fiber for our fiber channel systems customers," said Vidya Sharma, Picolight's vice president of marketing. "Because of the high drive currents of edge-emitting lasers, module-level heat dissipation is becoming limiting for high-density, high-bandwidth systems. Next-generation high-density form factors will strongly favor exclusive use of VCSEL technology due to its low heat and low EMI-generation characteristics."

Pioneered in 1989 by optical innovator Jack Jewell, Picolight's founder and chief technology officer, VCSEL technology emits light vertically through the surface of a wafer--rather than through its edges, as with other edge-emitting Fabry-Perot (FP) and distributed-feedback (DFB) lasers. The devices require very little electrical current to produce optical energy output of 850nm and above, and they emit a narrow, circular beam that makes it easy to transmit the light into an optical fiber. VCSELs are also less expensive to manufacture, easier to test and more efficient to operate than other laser technologies.

Sponsored Recommendations

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Understanding Practical Uses and Optimization Techniques for Fluorescence Optical Filters

Feb. 26, 2025
Learn about optical fluorescence and which optical filters to include in your instrument set up. See more with Semrock filter sets.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!