Graphene becomes incandescent light source for use in integrated photonic circuits

June 15, 2015
Electrically heated graphene does not heat up its substrate very much.

A team of scientists and engineers from Columbia University (New York, NY), Seoul National University (SNU; Seoul, South Korea), Korea Research Institute of Standards and Science (KRISS; Daejeon, South Korea) and the University of Texas at Austin have created an incandescent light source using graphene.1

A graphene strip spanning two conducting contacts placed on a silicon chip reaches temperatures of above 2500 °C, but its spectral output is not strictly a blackbody spectrum.

Spectral output of the heated graphene showed peaks at specific wavelengths, which the team discovered was due to interference between the light emitted directly from the graphene and light reflecting off the silicon substrate and passing back through the graphene. "This is only possible because graphene is transparent, unlike any conventional filament, and allows us to tune the emission spectrum by changing the distance to the substrate," notes Young Duck Kim, a Columbia University researcher.

As temperature goes up, conductivity goes down

The ability of graphene to achieve such high temperatures without melting the substrate or the metal electrodes results from the fact that, as it heats up, graphene becomes a much poorer conductor of heat; as a result, the high temperatures stay confined to a small "hot spot" in the center.

Light from the microscopic source is visible to the naked eye with no magnification.

The new type of light source could provide light within integrated photonic circuits and could possibly become a component of thin, flexible, transparent displays.

The team demonstrated the scalability of their technique by constructing large-scale arrays of chemical-vapor-deposited graphene light emitters.

The group is currently working to further characterize the performance of these devices -- for example, how fast they can be turned on and off -- and to develop techniques for integrating them into flexible substrates.

Sources:

http://engineering.columbia.edu/worlds-thinnest-light-bulb%E2%80%94graphene-gets-bright

http://news.utexas.edu/2015/06/15/researchers-build-worlds-thinnest-light-bulb-from-graphene

REFERENCE:

1. Young Duck Kim et al., Nature Nanotechnology (2015); http://dx.doi.org/10.1038/nnano.2015.118.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!