Compact terahertz radiation source is continuous-wave, operates at room temperature

March 28, 2016
Device emits in a wide frequency range of 1 to 5 THz.

Current terahertz sources are large, multi-component systems that sometimes require complex vacuum systems, external pump lasers, and sometimes cryogenic cooling. Now Manijeh Razeghi and her colleagues at Northwestern University (Evanston, IL) have developed a new type of terahertz emitter that bypasses these issues.1 The small, room-temperature device, which emits in wide frequency range (1 to 5 THz), is based on intracavity difference frequency generation emitted by a strong-coupled strain-balanced quantum cascade laser design.

The emitter produces single-mode terahertz radiation at output powers up to 14 μW. With the ability to detect explosives, chemical agents, and dangerous biological substances from safe distances, the device could make public spaces more secure.

“A single-component solution capable of room temperature continuous wave and widely frequency tunable operation is highly desirable to enable next generation terahertz systems,” says Razeghi.

This new research builds on Razeghi group’s many years of research with Northwestern’s Center for Quantum Devices, including the development of the first single-mode room-temperature terahertz laser in 2011.

Source: http://www.mccormick.northwestern.edu/news/articles/2016/03/new-terahertz-source-could-strengthen-sensing-applications.html

REFERENCE:

1. Quanyong Lu et al., Nature Communications (2016); doi: 10.1038/srep23595

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!