Impurities dramatically increase nanolaser output

July 15, 2016
ANU scientists have increased the light output from tiny nanolasers 100 times by adding impurities.

Research from the Australian National University (ANU; Acton, Australia ) published in Nature Communications describes a discovery that could be central to the development of low-cost biomedical sensors, quantum computing, and a faster internet; namely, ANU scientists have increased the light output from tiny nanolasers 100 times by adding impurities.

RELATED ARTICLE: IR-emitting room-temperature nanowire lasers are based on gallium arsenide

Researcher Tim Burgess added atoms of zinc to lasers one hundredth the diameter of a human hair and made of gallium arsenide--a material used extensively in smartphones and other electronic devices. "Normally you wouldn't even bother looking for light from nanocrystals of gallium arsenide - we were initially adding zinc simply to improve the electrical conductivity," said Burgess, a PhD student in the ANU Research School of Physics and Engineering. "It was only when I happened to check for light emission that I realised we were onto something."

Gallium arsenide is a common material used in photovoltaic cells, lasers and light-emitting diodes (LEDs), but is challenging to work with at the nanoscale as the material requires a surface coating before it will produce light. But previous ANU studies have shown how to fabricate suitable coatings.

The new result complements these successes by increasing the amount of light generated inside the nanostructure, said research group leader professor Chennupati Jagadish from the ANU Research School of Physics Sciences. "It is an exciting discovery and opens up opportunities to study other nanostructures with enhanced light emission efficiency so that we can shrink the size of the lasers further," he said.

Burgess added that the addition of the impurity to gallium arsenide, a process called doping, did not only improve the light emission. "The doped gallium arsenide has a very short carrier lifetime of only a few picoseconds, which meant it would be well suited to use in high speed electronics components," he said. "The doping has really has given these nanolasers a performance edge."

SOURCE: Australian National University; http://www.anu.edu.au/news/all-news/a-little-impurity-makes-nanolasers-shine

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!