UCSB researchers boost efficiency of quantum-dot lasers on silicon

March 5, 2014
A group at the University of California at Santa Barbara (UCSB) is lowering the cost of laser sources on silicon-photonic chips by growing efficient quantum dot (QD) lasers directly on silicon substrates using molecular beam epitaxy (MBE).

A group at the University of California at Santa Barbara (UCSB) is lowering the cost of laser sources on silicon-photonic chips by growing efficient quantum dot (QD) lasers directly on silicon substrates using molecular beam epitaxy (MBE). Although such QD lasers have been grown on silicon before, their performance has not equaled that of QD lasers grown on their native substrates (platforms made of similar semiconductor materials as the QD lasers themselves).

The researchers believe the work is an important step towards large-scale photonic integration in an ultralow-cost platform. The UCSB team will discuss its results at this year's OFC Conference and Exposition (March 9-13; San Francisco, CA).

Currently, quantum well lasers are used for data transmission. "Quantum wells are continuous in two dimensions, so imperfections in one part of the well can affect the entire layer," says UCSB graduate student Alan Liu. "Quantum dots, however, are independent of each other, and as such they are less sensitive to the crystal imperfections resulting from the growth of laser material on silicon. Because of this, we can grow these lasers on larger and cheaper silicon substrates. And because of their small size, they require less power to operate than quantum well lasers while outputting more light, so they would enable low-cost silicon photonics."

Using MBE, "the entire laser can be grown continuously in a single run, which minimizes potential contamination," says Liu.

Presentation W4C.5. titled "High Performance 1.3μm InAs Quantum Dot Lasers Epitaxially Grown on Silicon" will take place Wednesday, March 12 at 5:00 p.m. in room 121 of the Moscone Center.

This work was recently published in Applied Physics Letters: Liu, A. Y. et al., "High performance continuous wave 1.3 μm quantum dot lasers on silicon." Applied Physics Letters, 104, 041104 (2014)

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!