Laser-cooling an AFM probe boosts its sensitivity by 20 times

Aug. 15, 2014
Researchers in the Quantum Optics Group of the Research School of Physics and Engineering, Australian National University (Canberra, Australia) are laser-cooling the probes of atomic-force microscopes (AFMs) to boost their sensitivity.

A silver-gallium nanowire serves as an AFM probe; its mechanical oscillations can be reduced via laser cooling. Image: Quantum Optics Group, ANU

Researchers in the Quantum Optics Group of the Research School of Physics and Engineering, Australian National University (ANU; Canberra, Australia) are laser-cooling the probes of atomic-force microscopes (AFMs) to boost their sensitivity.1 The technique can cool a probe to 8K using feedback to allow the photo-induced force on the probe (which acts as a mechanical oscillator) to dampen the oscillator's motion and thus cool it.

One disadvantange is that the probe cannot be used while the laser is on, as the laser effect overwhelms the sensitive probe. So the laser has to be turned off and any measurements quickly made before the probe heats up within a few milliseconds. By making measurements over a number of cycles of heating and cooling, accurate AFM measurements can be made.

The technique boosts the sensitivity of the AFM by 20 times, resulting in a room-temperature force-measurement sensitivity of better than 2 x 10-16 N.

"The level of sensitivity achieved after cooling is accurate enough for us to sense the weight of a large virus," says Ping Koy Lam, leader of the Quantum Optics Group.

The force sensor used by the ANU team was a 200-nm-wide silver-gallium nanowire coated with gold.

OK, maybe laser not needed after all
"We now understand this cooling effect really well," says Ph.D. student Harry Slatyer. "With clever data processing we might be able to improve the sensitivity, and even eliminate the need for a cooling laser."

Source: http://news.anu.edu.au/2014/08/15/laser-makes-microscopes-way-cooler/

REFERENCE:

1. Mahdi Hosseini et al., Nature Communications (2014); doi: 10.1038/ncomms5663

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!