New 700-nm-emitting MoS2 LED could be interesting for silicon photonics

April 25, 2014
A group at Ecole Polytechnique Federale de Lausanne (EPFL; Lausanne, Switzerland) that has been exploring the properties and uses of the semiconductor molybdenum disulphide (MoS2) has now created both LEDs and photovoltaic cells using a 2D (atomically thin) monolayer of MoS2 coated on silicon (with silicon dioxide placed in between in some spots as an electrical insulator).

A group at Ecole Polytechnique Federale de Lausanne (EPFL; Lausanne, Switzerland) that has been exploring the properties and uses of the semiconductor molybdenum disulphide (MoS2) has now created both LEDs and photovoltaic cells using a 2D (atomically thin) monolayer of MoS2 coated on silicon (with silicon dioxide placed in between in some spots as an electrical insulator).1

LED could be useful in silicon photonics

Previously, EPFL professor Andras Kis and his team in the Laboratory of Nanoscale Electronics and Structures (LANES), had made an electronic chip, a flash memory device, and an image sensor from MoS2, which has a direct bandgap. Their new LED, which has vertical heterojunctions consisting of n-type monolayer MoS2 and p-type silicon, emits in a 250 nm band with a peak centered at 700 nm (the first prototype has a low efficiency), while the solar cell reaches an efficiency of 4%.

As for the LED, “This light production is caused by the specific properties of molybdenite,” says Kis. “Other semiconductors would tend to transform this energy into heat.”

And the solar cell: "Molybdenite and silicon are truly working in tandem here,” notes Kis. "The MoS2 is more efficient in the visible wavelengths of the spectrum, and silicon works more in the infrared range; thus the two working together cover the largest possible spectral range.”

The scientists want to try to create MoS2 integrated emitters for silicon photonics devices, as well as develop MoS2 LED bulbs.

REFERENCE:

1. Oriol Lopez-Sanchez et al., ACS Nano (2014); doi: 10.1021/nn500480u

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!