Ge-on-Si direct-band-gap LED lays groundwork for group-IV laser

Aug. 1, 2009
A 1.6-µm-emitting germanium-on-silicon (Ge-on-Si) LED developed by researchers at Stanford University (Palo Alto, CA) could be the key to a Si-compatible group-IV semiconductor laser (useful for optical interconnects and other integrated Si photonics devices).

A 1.6-µm-emitting germanium-on-silicon (Ge-on-Si) LED developed by researchers at Stanford University (Palo Alto, CA) could be the key to a Si-compatible group-IV semiconductor laser (useful for optical interconnects and other integrated Si photonics devices). The device, an n+/p homojunction LED, was fabricated using an in situ doping method. Lattice mismatch between Ge and Si provides compressive strain on the Ge, creating a direct band gap; doping with high concentrations of phosphorous and boron shifts the emission wavelength to the relevant 1.6 µm region.

Click here to enlarge image

One interesting effect occurring in the new device is that as its temperature increases, so does its output intensity (contrary to what happens in ordinary LEDs). The reason is that at low temperatures, the so-called Fermi-Dirac electron distribution, which determines which electrons contribute to the emission of light, resembles a step function with the step positioned just in the wrong place. At high temperatures, however, the electron distribution gets “smeared out,” with many electrons occupying states that allow them to radiate light. The researchers tested the LED at temperatures ranging from 50 K to 298 K, confirming the effect. Creating a laser would require an even higher doping to achieve gain, say the researchers. Contact Szu-Lin Cheng at [email protected].

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!