SemiNex launches laser-engine production line

April 2, 2019
Indium phosphide laser diode maker SemiNex's new assembly line is turning out laser engines for medical aesthetics.

As of March 2019, SemiNex Corporation has begun manufacturing their laser engines on a newly implemented assembly line at the company's headquarters in Peabody, Massachusetts. Over the past couple years, SemiNex engineers have optimized trial production processes to lower cost, improve performance, and increase capacity. Now, with production in full swing, SemiNex will continue to monitor and improve key performance metrics such as cycle time, on-time delivery, yield, and throughput. These steps will be crucial to successfully transferring the process over to contract manufacturinga technique that SemiNex says it typically uses to stay lean.

"The new production line uses custom fixtures to automate critical steps and requires minimal input from a technician," says mechanical engineer and project lead, Matt Hamerstrom. "We've reduced assembly time tenfold from the old design, and we were able to halve the cost while maintaining optimal performance."

Lasers for aesthetic use

While there has been considerable interest in home aesthetic laser treatments, few companies have been able to produce laser devices at a price and safety standard appealing to consumers. Every component of SemiNex's new production line, from the custom fixtures to the software on the final test station, has been engineered to meet these requirements for the consumer beauty market.

"It's been invaluable to have the insider knowledge and experience SemiNex brings to the production process," says Kayla Govoni, spokesperson for NIRA, a manufacturer of handheld home skincare laser devices. "We're expecting 2019 to be the year we really start seeing lasers for aesthetic use inside people's homes."

Seminex produces indium phosphide (InP)-based single-emitter, bar, bare-chip, and stack laser diode units, as well as modules, laser engines, and fiber-coupled units in the 1270 to 1940 nm wavelength region. In addition to aesthetic medical treatment, these lasers can be used for eye-safe military equipment and free-space optical communications.

Source: Seminex

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!