Rensselaer researchers aim to close LED "green gap"

Aug. 29, 2006
August 29, 2006, Troy, NY--A team of researchers from Rensselaer Polytechnic Institute has received $1.8 million in federal funding to improve the energy efficiency of green light-emitting diodes (LEDs).

August 29, 2006, Troy, NY--A team of researchers from Rensselaer Polytechnic Institute has received $1.8 million in federal funding to improve the energy efficiency of green light-emitting diodes (LEDs). As part of the U.S. Department of Energy's (DOE's) solid-state-lighting program, the team aims to close the "green gap" in LED technology by doubling or tripling the power output of green LEDs in three years, an advance that ultimately could lead to the replacement of incandescent and fluorescent lamps in general-illumination applications.

"Making lighting more efficient is one of the biggest challenges we face," says Christian Wetzel, the Wellfleet Career Development Constellation Professor, Future Chips, and associate professor of physics at Rensselaer. "Substantial reductions in the nation's dependence on primary energy imports will be possible once highly efficient solid-state light sources replace wasteful incandescent and fluorescent lighting."

Wetzel will be leading a team of scientists and engineers attempting to help meet the aggressive performance targets laid out in DOE's solid-state lighting accelerated roadmap, which calls for the development by 2025 of advanced solid-state-lighting technologies that are much more energy-efficient, longer-lasting, and cost-competitive than conventional lighting technologies.

The prime contender to meet this goal, according to Wetzel, is a white-light unit made from a combination of high-performance red, blue, and green LEDs. Researchers have made major strides in advancing the design of red and blue LEDs, but the technology behind green LEDs has lagged behind substantially, he says.

Green light is an essential piece of the puzzle because it addresses the peak of the human eye's sensitivity, as well as providing balance to the colors of red and blue light. Although green LEDs can be created by simply adding indium to the gallium nitride materials that compose blue LEDs, green LEDs produced to date have been inefficient, and are less than optimum for lighting homes and offices.

"The indium segregates under certain conditions, clustering in areas where there are already defects in the material," Wetzel says. A correlation between the indium clustering and the limited device performance has been proposed, but Wetzel suggests that this may just be a coincidence.

He plans to focus instead on aspects of the piezoelectric effect--a property of some materials that causes them to produce an electrical field when pressure is applied. By controlling this effect, he and his colleagues hope to develop a process to make higher-intensity green LEDs that convert electricity into light more efficiently.

Wetzel will be collaborating with co-principal investigator E. Fred Schubert, the Wellfleet Senior Constellation Professor of the Future Chips Constellation at Rensselaer, as well as Theeradetch Detchprohm, a research associate in Wetzel's lab, and four Rensselaer graduate students: Yong Xia, Wei Zhao, Yufeng Li, and Mingwei Zhu.

The team will be partnering with Kyma Technologies (Raleigh, NC), a developer of gallium nitride substrates and related products and services to the nitride semiconductor device market; and Crystal IS (Green Island, NY), a maker of single-crystal aluminum nitride substrates for the production of optoelectronic devices such as blue UV lasers.

The research was one of 16 projects selected for funding through DOE's Solid-State Lighting Core Technologies Funding Opportunity Announcement, which seeks to support multiple enabling or fundamental solid-state lighting technology areas for general illumination applications. The selections are expected to fill key technology gaps, provide enabling knowledge or data, and represent a significant advancement in the solid-state lighting technology base, according to DOE.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!