Northrop Grumman surpasses fiber-laser goals, receives phase II contract from DARPA

June 23, 2010
Northrop Grumman Corporation has surpassed Phase I goals for the Defense Advanced Research Projects Agency's (DARPA's) Revolution in Fiber Lasers (RIFL) program that seeks to mature fiber-laser technology.

Redondo Beach, CA--Northrop Grumman Corporation has surpassed Phase I goals for the Defense Advanced Research Projects Agency's (DARPA's) Revolution in Fiber Lasers (RIFL) program that seeks to mature fiber-laser technology. As a result, the company has received a contract for Phase II.

"Success in Phase II will create a powerful springboard for scaling fiber lasers to weapons-class performance levels," said Dan Wildt, vice president of Directed Energy Systems for Northrop Grumman's Aerospace Systems sector.

With a 1 kW single-mode fiber amplifier, the company demonstrated a near-perfect beam quality (M2) of better than 1.2 and efficiency better than 30%, twice the program's goal of 15%. Northrop Grumman also demonstrated a polarization-extinction ratio of 50:1 and extremely low phase noise, which is essential for the coherent combination of laser chains used to scale power to weapons-class levels.

Team effort
The Phase I success was a team effort involving Nufern (East Granby, CN), which supplied high-power amplifiers; Fraunhofer USA (Plymouth, MI), which supplied high-power diode laser pumps; and the Johns Hopkins University Applied Physics Laboratory (Laurel, MD), which supplied advanced fiber design and analysis.

The $4.6 million, 18-month Phase II DARPA contract calls for scaling power to 3 kW in a single-mode fiber amplifier. The company has patents on techniques used to facilitate combination of many fiber amplifier beams, while maintaining near-ideal beam quality. The ultimate goal is to develop the technology to 100 kW, the power necessary to field a lethal laser weapon.

Northrop Grumman is also working on other laser initiatives that will build on the company's scalable architecture and beam-combining expertise. They include:

--The 2-Dimensional Diffractive Optical Element Beam Combining Demonstration, a U.S. Air Force Research Laboratory program under which the company is demonstrating diffractive beam combining using the Joint Department of Defense high-power fiber laser test bed, and

--The Robust Electric Laser Initiative, a two-year, $8.7 million contract for a High Energy Laser -- Joint Technology Office program to produce a design using the company's diffractive-optical-element beam-combining technique to increase power levels to 25 kW.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Precision-Engineered Longpass Filters

Sept. 5, 2024
Discover our precision-engineered Longpass Filters, designed for high transmission and optimal wavelength separation. Perfect for fluorescence imaging, microscopy, and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!