Raman amplification could mean inexpensive laser petawatts

Oct. 11, 2010
Through simulations, scientists have demonstrated the feasibility of boosting Raman amplification into the multipetawatt regime.

Swindon, England--Through simulations, scientists from the Instituto Superior Tecnico in Lisbon, Imperial College London, and the Universities of St. Andrews, Lancaster, and Strathclyde as well as the Science and Technology Facilities Council's (STFC's) Central Laser Facility staff have demonstrated the feasibility of boosting Raman amplification into the multipetawatt regime, which could compress high-power laser-pulse lengths by a factor of 1000, at the same time boosting their peak powers by a factor of 300.1 This means that current very expensive and complex laser set-ups could eventually be replaced with smaller and more cost-effective systems. As a result, many technologies--including those using lasers to produce x-rays--would become far more accessible and easier to mass-produce.

The technique has been examined over a two year period using supercomputers to test every possible aspect of the theory. "In the past, studies have been carried out to test the theory, but only using simplified models which do not include all of the relevant phenomena. Our new model has shown that, in most cases, the amplified laser beam breaks up into 'spikes,' making it difficult to focus the beam to a small spot," said Raoul Trines from STFC's Central Laser Facility. "But for a few special cases, the amplified laser pulse is of excellent quality, enabling exceptionally tight focusing of the beam."

The next step will be to apply the theoretical study on an actual high-power laser and fine-tune the method through rigorous experimental testing.

REFERENCE:

1. R. M. G. M. Trines et al., Nature Physics, October 10, 2010.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

From Life Sciences to Industry: Advancements in Optical Filters

Aug. 1, 2024
Optical filters are increasingly used in VR, advanced medical imaging, environmental monitoring, and satellite communications. This whitepaper highlights Chroma’s technical advancements...

Optical Filters for Semiconductor Inspection

Aug. 1, 2024
At Chroma Technology, we understand that the quality of your optical filters directly impacts the accuracy of your inspection processes and ultimately, the performance of your...

Optical Filters for Astronomy Applications

Aug. 1, 2024
At Chroma we manufacture the highest quality, narrow-band spectral line filters for astronomy. Our narrow passbands provide the precision and accuracy to ensure your spectral ...

Chroma is a leading manufacturer of highly precise optical filters

Aug. 1, 2024
Chroma is known for exceptional customer service and technical support. They produce durable, high-performance optical filters with a spectral range of 200-3000nm, serving diverse...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!