University of Missouri team develops combination laser/ultrasound tattoo-removal technique

April 12, 2017
"Sonoillumination" also works on birthmarks and port wine stains.

The first laser treatments used to treat skin conditions such as benign vascular birthmarks and port-wine stains were developed more than 40 years ago. Since then, clinicians and dermatologists have seen a rise in demand for minimally invasive laser-based treatments, including tattoo removal. However, it is difficult for the laser light, which is held at a distance from the skin, to be perfectly and selectively absorbed by only the targeted birthmark or tattoo.

Now, researchers from the University of Missouri (MU; Columbia, MO) have developed instruments that transmit laser light into the tissue through direct contact. The techniques developed by the interdisciplinary team can be used by dermatologists and will reduce safety concerns in laser dermatology by improving laser transmission through surface layers of the skin.

Laser techniques come with risks, including eye damage. Open-air transmission, in which the clinician holds the laser at a distance from the patient, is typical during normal dermatological procedures and presents a hazard to both the patients' and doctors' eyes. Paul Whiteside, a doctoral candidate in the MU Division of Food Systems and Bioengineering, devised a system that will not only improve the process, but will be safer for both clinicians and patients.

"The system we developed uses ultrasonic pulsation in conjunction with a clinical laser to alter the properties of skin tissues during the procedure," Whiteside says. "We've named the technique 'sonoillumination,' and we're hopeful that the procedure will be available widely in the near future."

Whiteside and his team, including adviser, Heather Hunt, an assistant professor of bioengineering in the MU College of Engineering, tested the sonoillumination system on porcine skin-tissue samples. Using various amplitudes and pulses, the instruments they developed were tested on the samples and showed great promise for the clinical setting. Whiteside presented his technique to clinicians on April 9, 2017, at the annual conference of American Society for Laser Medicine and Surgery (ASLMS; San Diego, CA).

The team co-authored the paper "Ultrasonic modulation of tissue optical properties in ex vivo porcine skin to improve transmitted transdermal laser intensity," which recently was accepted for publication by the society's journal, Lasers in Surgery and Medicine.

The researchers are developing a startup company to commercialize the technique.

Source: http://munews.missouri.edu/news-releases/2017/0410-laser-based-dermatological-procedures-could-be-revolutionized-with-new-technique/

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!