Metasurface optic for Gaussian beams accepts a nonplanar input beam

Aug. 1, 2019
Most metasurface optics only accept plane-wave beams; a new hybrid metal-dielectric metastructure focuses a diverging Gaussian beam back on itself.

With their potential ability to replace bulk-glass optical components, and even entire optical systems, metasurface optics have come a long way in their capabilities, including high-numerical-aperture (NA) operation and multispectral or broadband operation. But most metasurface optics today are designed to accept and modify plane waves, eliminating the possibility of finite-conjugate metasurface optics. Researchers at the Chalmers University of Technology (Göteborg, Sweden) and Politecnico di Torino (Turin, Italy) have now theoretically developed a metasurface, designed for use with monochromatic Gaussian beams, that reflects a diverging beam and forms a converging beam in the process (in other words, it’s the metasurface analogue of a concave spherical mirror)—the process has an efficiency of higher than 90%.

In the model, the subwavelength metasurface elements (meta-atoms) are fins of titanium dioxide (TiO2) with varying orientations (producing differing phases) in almost-periodic arrays. Both all-dielectric and hybrid metal-dielectric structures were modeled for wavelengths in the near-infrared, with most of the modeling done on the hybrid metal-dielectric version. The array period was 380 nm—the difference in phase between consecutive elements grew quadratically with the distance from the optical axis. The whole reflective metasurface had a radius of 12.57 µm and a focal length of 50 λ. The beam waist was 3.21 µm for both the incoming and reflected beams, with a close-to-ideal beam profile. An example phase profile for the ideal Gaussian field (blue line in figure) and cross-polarized reflected field (red dotted line) at a distance of 1350 nm from the surface matched well for the hybrid metal-dielectric structure. Reference: J. Martínez-Llinàs et al., Opt. Express, 27, 15 (Jul. 22, 2019); https://doi.org/10.1364/oe.27.021069.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

7 Reasons Why Air Bearings Outperform Mechanical Bearings

Feb. 13, 2025
Frictionless air bearings and air bearing stages have decisive advantages in precision motion and automation applications.

Precision Linear Actuators, Motorized and Piezo-Driven

Feb. 13, 2025
High Performance Linear Actuators & Stages, Ball-Screw Stepper Actuators and Micro Actuators with High-Speed, High Accuracy and Resolution | Manufactured by PI

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!