Imec extends silicon photonics portfolio targeting next-generation datacenter interconnects

Sept. 24, 2019
With 12 presentations at ECOC, Imec and its research labs at Ghent University discuss their components helping to pave the way to 400 Gbit/s and beyond optical links.

At the 45th European Conference on Optical Communication (ECOC; 22-26 Sept. 2019) held this week in Dublin, Ireland, Imec (Leuven, Belgium), together with IDLab and the Photonics Research Group, both Imec research labs at Ghent University, are presenting their milestone results in silicon photonics (SiPho) technology development. The demonstrated building blocks help pave the way for 400 Gbit/s and beyond optical links as well as for copackaged optics in next-generation datacenter switches.

Highlights include a through-silicon-via (TSV)-assisted, high-density (Tbit/s/mm2) CMOS-SiPho transceiver prototype, a low-power 106 Gbit/s PAM-4 SiPho transmitter, a high-speed germanium/silicon (Ge/Si) avalanche photodetector, and ultrabroadband low-loss single-mode fiber couplers.

In the next few years, datacenter optical links will be upgraded to 400 Gbit/s capacity by aggregating four 100 Gbit/s PAM-4 lanes per link. As a consequence, the aggregate bandwidth to be handled by a single datacenter switch will increase to 51.2 Tbit/s, requiring ultrahigh-density SiPho transceiver technology tightly integrated and copackaged with the switch CMOS chip.

200 and 300 mm wafers

To help industry to meet these challenging scaling requirements, Imec and its research labs at Ghent University are developing technology building blocks by using Imec’s Si photonics platforms on 200 mm and 300 mm wafers in combination with high-speed electronics. “Our R&D programs have delivered substantial improvements at various levels of Si Photonics technology, both at the level of process integration, individual component development as well as at the subassembly level,” Joris Van Campenhout, Program Director Optical I/O at Imec.

One of the highlights that Imec presents at ECOC is the first TSV-assisted hybrid FinFET CMOS/Si-photonics transceiver technology. Operating at a data rate of 40 Gbit/s non-return-to-zero (NRZ, single lane), this prototype combines ultralow power consumption with 1 Tbit/s/mm2 bandwidth density, paving the way to ultradense copackaged optics in future datacenter switches.

Imec and Ghent University are also presenting a 106 Gbit/s transmitter that uses PAM-4 as a modulation format. This four-level modulation format has recently been adopted by industry as the modulation format of choice for 53 GBd single-lane transmission over 500 m. Compared to other PAM-4 transmitters, Imec’s approach does not use any equalization or digital signal processing and integrates two parallel GeSi electroabsorption modulators. This results in a very compact and low-power (1.5 pJ/bit) transmitter able to transmit data over 1 km single-mode fiber at 106 Gbit/s.

Also, Imec demonstrates improved edge-coupler designs based on a hybrid Si/SiN photonic platform. Improvements to the layer stack resulted in better than -1.5 dB/fiber coupling efficiency to industry-standard single-mode fibers for operation in the O- and C-bands. On the receive side, a high-speed Ge/Si avalanche photodetector is presented with a multiplication gain of 8 and 32 GHz bandwidth. These avalanche photodetectors show potential for improving receiver sensitivities and optical link margins at data rates of 40 Gbit/s and beyond.

Source: Imec

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

7 Reasons Why Air Bearings Outperform Mechanical Bearings

Feb. 13, 2025
Frictionless air bearings and air bearing stages have decisive advantages in precision motion and automation applications.

Precision Linear Actuators, Motorized and Piezo-Driven

Feb. 13, 2025
High Performance Linear Actuators & Stages, Ball-Screw Stepper Actuators and Micro Actuators with High-Speed, High Accuracy and Resolution | Manufactured by PI

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!