Electrostatic Rydberg-atom mirror reflects hydrogen

Sept. 1, 2006
Adding to the repertoire of atomic optics, in which atoms are manipulated as if they were photons (see “Coherent atoms are on the move,” p. 97) researchers at ETH Zürich (Zurich, Switzerland) have created a normal-incidence atom mirror.

Adding to the repertoire of atomic optics, in which atoms are manipulated as if they were photons (see “Coherent atoms are on the move,” p. 97) researchers at ETH Zürich (Zurich, Switzerland) have created a normal-incidence atom mirror. The device works with Rydberg atoms (in this case, hydrogen), which have at least one orbital electron excited to a very high quantum state, making the atoms easily influenced by external electric fields. The electrostatic mirror consists of four electrodes that create an electric field of about 2000 V/cm.

Distance from the excitation point (mm)
Click here to enlarge image

Hydrogen atoms in a supersonic flow were created by photolysis of ammonia with a 193 nm excimer laser. Counterpropagating UV and vacuum-UV laser beams then photoexcited the atoms to the n = 27 Stark state. Initially moving at 720 m/s, the Rydberg atoms were stopped by the mirror 1.9 mm away from the spot where they were photoexcited, and were reflected back to their original position in about 9.8 µs. The mirror also focused the atom cloud in one dimension. The atom cloud was imaged by suddenly ionizing the atoms with an electric-field pulse, making the cloud visible on a phosphor screen. Contact Edward Vliegen at [email protected].

Sponsored Recommendations

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Precision-Engineered Longpass Filters

Sept. 5, 2024
Discover our precision-engineered Longpass Filters, designed for high transmission and optimal wavelength separation. Perfect for fluorescence imaging, microscopy, and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!