Gold diffused in silicon waveguide leads to NIR light amplification

Dec. 15, 2016
Researchers at Tel Aviv University are making silicon-on-insulator waveguides into optically pumped gain media by diffusing gold into them.

Silicon is an indirect-bandgap semiconductor and thus ordinarily does not allow for lasing or amplification of light without using hybrid materials. However, Stanislav Stepanov and Shlomo Ruschin of Tel Aviv University (Tel Aviv, Israel) are making silicon-on-insulator (SOI) waveguides into optically pumped gain media by diffusing gold into them. If further developed, this technology could enable practical on-chip waveguide-based silicon lasers and amplifiers for silicon photonic integrated circuits, as well as in separate components.

Using phosphorus-doped SOI wafers, the researchers thermally diffused gold into the wafer's top layer at room atmosphere and pressure, creating a range of prototypes using different diffusion temperatures from 550° to 700°C and different diffusion times from 30 minutes to 7 hours. After diffusion, the researchers patterned ridge large single-mode waveguides with 5 μm thickness, 10 μm width, and 2 cm length with a 0.5-μm-thick silicon dioxide buffer layer. The waveguides were transversely pumped from above with laser light at 532 nm, with the intent to create optical amplifiers for the near-infrared (NIR) range. The pump light was modulated by a chopper at frequencies ranging from 1 to 1000 Hz for experimentation. Two signal lasers were used: a tunable laser with a 1.527 to 1.576 μm wavelength range, and a single-wavelength 1.32 μm laser. An oscillogram of the test results using the longer-wavelength signal laser shows a gain of 6 to 7. At a 0.55 W pump power, the gain coefficient reached 30 dB/cm for the 1.55 μm signal, but only about 6 dB/cm for the 1.32 μm signal. The researchers next want to better understand the mechanisms for amplification and use that info to develop practical devices. Reference: S. Stepanov and S. Ruschin, arXiv:1611.03475v1 [physics.optics] (Nov. 6, 2016).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Understanding Practical Uses and Optimization Techniques for Fluorescence Optical Filters

Feb. 26, 2025
Learn about optical fluorescence and which optical filters to include in your instrument set up. See more with Semrock filter sets.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!