PV module concentrates sunlight, lets light through for windows

June 1, 2011
A see-through photovoltaic (PV) module for window-integrated use developed at the Nagaoka University of Technology (Niigata, Japan) contains a low-concentration prism concentrator that allows direct solar radiation to be focused onto PV solar cells while diffuse solar radiation is transmitted to a building's interior.

A see-through photovoltaic (PV) module for window-integrated use developed at the Nagaoka University of Technology (Niigata, Japan) contains a low-concentration prism concentrator that allows direct solar radiation to be focused onto PV solar cells while diffuse solar radiation is transmitted to a building’s interior. The arrangement is efficient because direct solar radiation is (on sunny days) far more intense than diffuse solar radiation. The geometry and tilt are set such that the device functions without adjustment for a large part of the yearly sun path.

The prisms concentrate light via total internal reflection, which fails (due to the geometry) for most diffuse sunlight angles. After ray-trace modeling, the team constructed a test module with acrylic-resin prisms and single-crystalline silicon PV cells. The cell area was 57.5% of the total module area; the device was tested against a conventional module. A pyranometer measured the broadband solar irradiance incidence on the modules, and a pyrheliometer measured the direct normal incidence; the diffuse component of the solar irradiation was the difference between the two. The test module generated 1.15 times more electrical power than the conventional module, using only 63% of the cell area. The test module’s generation was twice that of the control per amount of light absorbed. Contact Noboru Yamada at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!