Robust synthesis method improves dielectric-mirror design

March 1, 2011
Many significant breakthroughs in ultrafast-laser technology have been made possible by improvements in ultrafast laser optics, specifically in the development of thin-film dielectric coatings and processes.

Many significant breakthroughs in ultrafast-laser technology have been made possible by improvements in ultrafast laser optics, specifically in the development of thin-film dielectric coatings and processes. Despite these improvements, electron-beam evaporation, magnetron sputtering, and other fabrication techniques are still prone to deposition errors. In an effort to minimize those errors and improve dielectric-mirror design, researchers from Ludwig-Maximilians-Universität München (Munich, Germany), Ultrafast Innovations (Garching, Germany), and Moscow State University (Moscow, Russia) have developed a new robust synthesis method that can be used to design dispersive mirrors that are impossible to produce using conventional needle optimization techniques.

The robust synthesis method is essentially a generalization of very efficient needle optimization and gradual evolution techniques, and is based on a simultaneous optimization of spectral characteristics of multiple designs located in a small neighborhood of the main or pivotal design. Using the method and a conventional needle optimization technique, the research team fabricated dispersive mirrors operating from 690–890 nm with a dispersion of -300 fs2 at 800 nm. The mirror fabricated using the robust synthesis method had much lower sensitivity to deposition-layer thickness errors and exhibited much-less-pronounced resonance errors. Contact Vladimir Pervak at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Achromatic Lenses: High-Quality Custom Optics

March 13, 2025
Ensure clarity and accuracy in your optics systems with Lacroix’s achromatic lenses. Explore how our custom solutions minimize chromatic aberration for perfect results.

Manufacturing Considerations for Tolerancing Aspheres

March 13, 2025
Understand the critical factors in manufacturing aspheres and how Lacroix Optics ensures precise tolerancing in every optical component.

Explore Our Videos: Insights into Precision Optics

March 13, 2025
Get an inside look at Lacroix Optics with our collection of informative videos showcasing our capabilities, innovations, and processes.

Optical Assemblies: Reliable and Precise Solutions

March 13, 2025
Ensure your optical system works seamlessly with Lacroix Optics' custom optical assemblies. Discover the precision and reliability we bring to every project.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!