Cyanobacteria (biofuel) cultivation uses evanescent light fields

Aug. 1, 2011
Photosynthetic cyanobacteria, when harnessed in a photobioreactor or solar collector, can convert atmospheric carbon dioxide and light energy into usable biofuels.

Photosynthetic cyanobacteria, when harnessed in a photobioreactor or solar collector, can convert atmospheric carbon dioxide and light energy into usable biofuels; unfortunately, current photobioreactors produce uneven illumination at low densities, minimizing efficiency of the biofuel conversion process. But researchers at the University of Victoria (Victoria, BC, Canada) and Cornell University (Ithaca, NY) have discovered that near-field evanescent waves on the surface of waveguides generated by a helium-neon (HeNe) laser can stimulate the thylakoid membranes of cyanobacteria responsible for light-dependent photosynthesis reactions. This approach has the potential to optimize the production of biofuel and minimize harmful photobleaching of cyanobacteria species.

To demonstrate feasibility, the pill-shaped, immotile cyanobacteria Synechoccocus elongatus was cultured on a microscope slide and placed over a right-angle prism through which was passed a 1 mW, 632 nm HeNe laser beam. Contained in a dark enclosure, total internal reflection induced an evanescent profile that was highest in the center of the ellipse and decreased toward the periphery. The region just outside the central Gaussian beam (and beyond the region of highest illumination at 500 W/m2, which results in photo-inhibition of the cells and stunted growth) showed preferential growth of the cyanobacteria species. A plasmonic excitation scheme is under development using an optically thick layer of gold to minimize the influence of directly transmitted light. Contact Matthew Ooms at [email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!