Graphene-based Wi-Fi antenna for windows is optically transparent

Aug. 9, 2017
An optically transparent half-wavelength microwave antenna made by layering monolayer graphene onto glass has been created.

An optically transparent half-wavelength microwave antenna made by layering monolayer graphene onto glass has been created by a group at Aoyama Gakuin University (Kanagawa, Japan). The antenna could be used, for example, as a transparent wireless-communications antenna that would simply be part of an architectural window, an automotive window, eyeglasses, or other glass surface. While indium tin oxide (ITO)-based transparent microwave windows have previously been fabricated, the researchers say that their graphene version removes the need to use indium, which is a rare-earth metal.

The antenna itself is actually rather small: 10.7 × 1.0 mm. It includes a gold-film coplanar waveguide (CPW) at the edge of the window connected by a gold-film transmission line to the graphene antenna itself. To create the device, graphene was first grown on a copper foil via low-pressure chemical-vapor deposition—the graphene was then transferred to the experimental 1-mm-thick, 20 × 20 mm square synthetic quartz substrate. The shape of the antenna and CPW were then patterned using standard photolithographic techniques. Monolayer graphene has a visible absorption of only around 2%, so is highly transparent. Measured reflection minima at the operational microwave frequencies, as well as the detection of the 20.7 GHz operating microwave radiation, showed that the antenna was working well, with about 90% of the microwave power reaching the antenna elements. The researchers are now working on integrating the antenna into optoelectronic devices. Reference: S. Kosuga et al., Appl. Phys. Lett. (2017); http://dx.doi.org/10.1063/1.4984956.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!