Diffuser in front of camera forms compact and low-cost wavefront sensor

Nov. 9, 2017
A broadband, compact, and low-cost diffuser-based wavefront sensor works by simply placing a thin diffuser near a camera to allow sensing of the local wavefront gradient by measuring the translation of the speckle pattern (in reference to a previously recorded speckle pattern of a flat wavefront) as a function of the position across the wavefront.
Content Dam Lfw Print Articles 2017 11 1711lfw Nb F4

Well known for their use in adaptive-optical (AO) systems, wavefront sensors—for example, the Shack-Hartmann configuration, which consists of a lens array in front of a camera, allowing wavefront tilts to be measured across the field and then integrated into a wavefront shape—are also important for ophthalmology, imaging through turbid media, and laser-beam characterization. However, a Shack-Hartmann-type lens array is not the only type of optical element that can be placed in front of a camera to measure wavefront error; a diffuser (usually placed relatively far away from the camera) can be used instead, simplifying the optical system. The downside of a diffuser-based wavefront sensor, which creates a speckle pattern that can be analyzed, is the complex calculations required to retrieve the wavefront data.

A broadband, compact, and low-cost diffuser-based wavefront sensor has now been developed by Pascal Berto, Hervé Rigneault, and Marc Guillon of the Université Paris Descartes Neurophotonics Laboratory (Paris, France) and the Institut Fresnel (Marseille, France), who simply place a thin diffuser near a camera to allow sensing of the local wavefront gradient by measuring the translation of the speckle pattern (in reference to a previously recorded speckle pattern of a flat wavefront) as a function of the position across the wavefront. Local speckle grains are shifted laterally in proportion to the local wavefront tilt; a so-called diffeomorphism algorithm combined with a 2D gradient integration determines the retrieved wavefront shape. In an experimental verification, a holographic diffuser was placed a few millimeters from a monochrome CMOS camera and speckle pattern shifts were recorded and analyzed via algorithms implemented in MATLAB. The λ/300 sensitivity of the setup was limited by the 8-bit camera used. Phases sensitivity is tuned by changing the distance of the diffuser from the camera. Reference: arXiv:1710.03797v1 [physics.optics] (Oct. 1, 2017).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!