Ultralow-index fluoropolymer AR coatings improve durability of plastic optics

April 10, 2017
Researchers have developed a fluoropolymer-based, broadband antireflection coating for plastic optics with ultralow refractive index.

Pennsylvania State University (University Park, PA) researchers have developed a fluoropolymer-based, broadband antireflection (AR) coating for plastic optics with ultralow refractive index that also withstands heat and sunlight, humidity, dirt, ultraviolet (UV) light, chemicals (solvents, acids, bases), abrasion, and repeated bend (1 cm radius) and compression cycling. These are admirable attributes, considering the rigors of applications such as solar concentrators, curved aviation glass, and other environmentally challenging applications suited to plastic optics, including acrylics and polycarbonates.

Fabricated using glancing-angle deposition (GLAD) of Teflon AF, a commercial fluoropolymer, the simple bilayer graded-index AR coatings are hydrophobic and antifogging, and exhibit a solar-spectrum-averaged (between 400 and 1600 nm) reflectance of <1% over a wide range of incidence angles. Using the GLAD process, the researchers were able to continuously vary the refractive index of the coating in the range from approximately 1.17 to 1.33 by varying the deposition angle, and found that the coatings adhere strongly to a variety of common polymer optical materials. The coatings were applied to curved lens surfaces as well as to an acrylic Fresnel lens where, for example, coating both sides increased the solar-spectrum-averaged transmittance from approximately 92% to 98%. Reference: B. Wang et al., Optica, 4, 2, 239-242 (2017).

For more info on these fluoropolymer-based antireflection coatings, please see https://coatings.specialchem.com/supplier/chemours.

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!