Silver film with cross-shaped nanoapertures is plasmonic quarter-wave plate

June 1, 2012
Researchers at the University of Melbourne and Casix are computationally modeling plasmonic optical wave plates that consist of a periodic array of cross-shaped nanoapertures in a silver film.

Researchers at the University of Melbourne (Victoria, Australia) and Casix (Fuzhou, China) are computationally modeling plasmonic optical wave plates that consist of a periodic array of cross-shaped nanoapertures in a silver film. For example, they have designed a quarter-wave plate for operation at a specified wavelength in the infrared. The wave-plate quality is created by making the cross shapes asymmetric.

The 2D structure—which was modeled using multiphysics software by COMSOL (Burlington, MA)—has a silver film thickness of 140 nm, an array period d in both dimensions of 400 nm, and crosses with a constant linewidth w of 40 nm, but with differing line lengths lx and ly. The period is large enough to keep localized aperture resonances well separated from resonances arising from surface-plasmon excitation. In one instance, ly is held fixed at 210 nm and lx is varied from 170 to 250 nm. The resulting transmission spectrum has two peaks that arise from the excitation of the resonance in each arm of the cross. The analysis showed that patterns with lx of 193 nm and 229 nm would behave as partially transmitting quarter-wave plates at 710 nm (left circularly polarized) and 760 nm (right circularly polarized), respectively. Contact Ann Roberts at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!