Periodically oriented GaN shows feasibility for mid-IR nonlinear optics

Oct. 9, 2012
Researchers at the US Naval Research Laboratory are creating useful mid-IR nonlinear optical devices by alternating the actual crystal orientation of the semiconducting nonlinear material to create potentially useful structures from gallium nitride (GaN) grown by hydride vapor phase epitaxy (HVPE).

The performance of periodically poled lithium niobate (PPLN), along with that of other nonlinear optical materials such as periodically poled potassium titanyl phosphate (PPKTP) that rely on alternating the orientation of ferroelectric domains to maintain quasi-phase matching (QPM), drops off in the midinfrared (IR) beyond 4 μm due to multiphonon absorption. Researchers at the US Naval Research Laboratory (Washington, DC) are creating useful mid-IR nonlinear optical devices by taking another approach—alternating the actual crystal orientation of the semiconducting nonlinear material—to create potentially useful structures from gallium nitride (GaN) grown by hydride vapor phase epitaxy (HVPE).

Gallium nitride has a transparency window of 0.36 to 7 μm, a very high thermal conductivity of 220 W/m°C that eases heat removal, a second-order nonlinear susceptibility with similar magnitude to that of PPLN, and—when grown by HVPE—low dislocation densities on the order of 106 to 107 cm-2. The researchers grow a layer of aluminum nitride in stripes on an N-polar GaN substrate, then simultaneously grow GaN in polarities that alternate between the stripe and stripe-free regions. Thicknesses of up to about 80 μm have been grown this way; the aim is to grow even thicker structures for practical use, as well as to further improve material quality. Contact Jennifer Hite at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!