Automated Antarctic observatory begins trials

March 1, 1997
Testing began in January of an unmanned astronomical observatory at the US station at the South Pole. The remotely controlled facility was developed by a research consortium consisting of the University of New South Wales (Sydney, Australia), which is the coordinating institution, Carnegie Mellon University (Pittsburgh, PA), and the Australian National University (Canberra, Australia).

Testing began in January of an unmanned astronomical observatory at the US station at the South Pole. The remotely controlled facility was developed by a research consortium consisting of the University of New South Wales (Sydney, Australia), which is the coordinating institution, Carnegie Mellon University (Pittsburgh, PA), and the Australian National University (Canberra, Australia). All three schools are providing instrumentation for the Automated Astrophysical Site Testing Observatory (AASTO). The project is geared toward possible future development of a large, remotely operated Antarctic observatory, in addition to acquiring astronomical images.

The South Polar test site is nearly 8000 ft above sea level, placing it above most atmospheric turbulence and infrared-absorbing water vapor. The AASTO control module is connected via fiberoptics to three telescopes: a 300-mm optical telescope, an infrared telescope to penetrate cosmic gas and dust clouds, and a submillimeter telescope to image background long-wavelength radiation attributed to the Big Bang. Infrared and longer wavelength observations are used to help determine cosmic evolution and the distribution of matter and energy throughout the universe.

An AASTO Skymonitor, supplied by Carnegie Mellon University, measures sky opacity in the microwave and far-infrared wavelengths. The instrument, which includes a chopper and filter wheel (left) and elevation scan mirror (right), determines which wavelengths can best be used.

The AASTO will undergo testing at the base for two years to confirm the robustness of its systems under severe conditions. After this accessible shakedown period, it will be flown to a site 1250 miles distant from the Pole for a one-year completely automated operational assessment. Data from the distant site will be relayed by satellite to the University of New South Wales.

About the Author

Rick DeMeis | Associate Editor, Technology

Rick DeMeis was Associate Editor, Technology for Laser Focus World from March 1995 through March 1997.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!