Metamaterial with hyperbolic dispersion is 51 µm thick

June 1, 2009
While the idea of a metamaterial-based invisibility cloak is fascinating, transforming the idea into reality is a daunting task.

While the idea of a metamaterial-based invisibility cloak is fascinating, transforming the idea into reality is a daunting task. This is especially true at optical frequencies, where the required metamaterial structures have geometries with features sized at the nanometer scale. Making an invisibility cloak, or indeed many other devices made possible by metamaterials, requires the construction of a bulk (3-D) metamaterial, as opposed to a thin-film (2-D) version. Rather than trying to make a 3-D metamaterial using difficult and expensive nanolithographic techniques, researchers at Norfolk State University (Norfolk, VA) and Purdue University (West Lafayette, IN) have been working on a much simpler approach that now has allowed them to create an optical metamaterial 51 µm thick.

An anodic alumina membrane, 1 cm × 1 cm × 51 µm and naturally full of 35 nm holes, became the base material; silver was electrochemically plated in the holes, mostly filling them up and creating an irregular array of parallel nanowires. Angles of refraction in the material were studied at different wavelengths, revealing that the metamaterial has hyperbolic dispersion for wavelengths greater than 0.84 µm; in addition, the direction of refraction for 632.8 nm light was consistent with a refractive index of less than 1. Contact Mikhail Noginov at [email protected].

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!