Picosecond laser pulses weld glass to silicon for MEMS fabrication

March 31, 2015
A picosecond-laser-based microwelding process can join glass to silicon (Si) quickly and with high mechanical strength.

With microelectromechanical systems (MEMS) as well as MOEMS (MEMS with optical function) devices being created for more and more purposes, including biosciences, consumer applications, and micro-optics, fabrication approaches that provide more options in building complex devices are sorely needed. In response, researchers at Osaka University (Japan), Erlangen Graduate School of Advanced Optical Technologies (SAOT; Germany), Okayama University (Japan), and Tampere University of Technology (Finland) have developed a picosecond-laser-based microwelding process that can join glass to silicon (Si) quickly and with high mechanical strength. Most MEMS and MOEMS devices are based on silicon; this new joining process will boost the field of MOEMS in particular.

Light from a fiber laser that emits at 1060 nm, has a beam quality M2 of 1.5, and produces pulses with a 20 ps duration at a rate of 4 MHz is focused through an objective with a numerical aperture of 0.1 to produce a 10 μm spot at the Si/glass interface through the glass. The samples are moved by a 3D stage with a translation speed of up to 2 m/s, as well as a custom-built translation stage with a speed of up to 5 m/s. A frequency-doubled Nd:YAG laser emitting at 532 nm is used to study details of the welding process. Borosilicate glass (Borofloat 33 and D263 by Schott) and aluminosilicate glass (SW-Y by AGC) can be welded. Borofloat 33 is particularly relevant due to the fact that its coefficient of thermal expansion (CTE) is similar to that of Si. The spatial resolution of the process is about 15 to 18 μm with no pre- or post-heating. Maximum strength of the weld joint is 85 MPa for Si/SW-Y and 45 MPa for Si/Borofloat 33. Welded samples can be easily diced, showing the process’ application to wafer-level packaging. Reference: I. Miyamoto et al., Opt. Express 23, 3 (Feb. 2015); doi: 10.1364/OE.23.003427.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!