Rubidium atom makes single-photon server

May 1, 2007
Quantum-information technology depends on single-photon sources.

Quantum-information technology depends on single-photon sources (see www.laserfocusworld.com/articles/257230). Although by its nature a single neutral atom can generate only one photon at a time, the difficulty in single-photon generation has up to now been the short duration of the emitted stream of photons-too short to adequately use the photons and ensure they are indistinguishable from each other. But by using a cavity-based scheme in which a dipole laser traps a single rubidium (Rb) atom, a trigger laser is used for photon generation, and a recycling laser is used for repumping, monitoring, and cooling the atom, researchers at the Max Planck Institute for Quantum Optics (Garching, Germany) and the University of Oxford (Oxford, England) have developed a single-photon server that delivers up to 300,000 sequential photons for as long as 30 s.

A single Rb atom is trapped in a high-finesse optical cavity by a two-dimensional optical lattice. A weak 785 nm cavity-stabilization laser confines the atom along the cavity axis, while a strong retroreflected-dipole laser confines the atom in a direction perpendicular to the cavity axis. The cavity is excited by a sequence of laser pulses, and a series of mirrors and filters deliver a stream of high-quality single photons. Contact Gerhard Rempe at [email protected].

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!