OPTICAL FABRICATION: Replication produces 840-mm diffraction grating

Aug. 1, 1995
Optical engineers at the Richardson Grating Laboratory of the Milton Roy Company (Rochester, NY) have adopted a mosaic approach that allowed them to use existing technology to produce a pair of 400 mm gratings that act as one large grating without resorting to oversized ruling engines and coating facilities.

Optical engineers at the Richardson Grating Laboratory of the Milton Roy Company (Rochester, NY) have adopted a mosaic approach that allowed them to use existing technology to produce a pair of 400 mm gratings that act as one large grating without resorting to oversized ruling engines and coating facilities. Fabricated for the European Southern Observatory (ESO), the record-dimension, high-performance echelle diffraction grating disperses light at wavelengths between 400 and 1000 nm. Two segments were replicated onto a single Zerodur substrate to create a finished element 840 × 214 × 125 mm in size.

Using a diamond tool mounted on a servo-controlled ruling engine, engineers fabricated a grating master by burnishing grooves into a 20-µm layer of aluminum vacuum-deposited on a 400-mm-long Zerodur substrate. This master was reproduced using an optical replication technique in which the grating is coated with a layer of polymer release, followed by a coating of aluminum, and a Zerodur backing plate. The release allows the replicated grating to be removed from the master, yielding a high-resolution, economical duplicate.

Two grating segments were produced from the master for the echelle grating. The groove spacing of the completed elements is 31.6 mm-1, with a 75.1° blaze angle. The two ruled segments were aligned on the monolithic Zerodur substrate such that they imaged their spectra to the same point, with an angular alignment on the order of arc seconds and required coplanarity within a few microns. This application did not require that the grooves of the two segments be in phase with one another.

The ESO Very Large Telescope Project is an array of four 8-m telescopes to be located in Chile. Optimized for the red end of the spectrum, the echelle grating will be one of the dispersing elements in a two-arm ultraviolet/visible light spectrograph being constructed for the ESO. A second grating optimized for the blue spectral region is currently under fabrication. The large size of the grating is necessary to accommodate the 200-mm beam diameter produced by the telescopes. The observatory is expected to be operational in 1997.

About the Author

Kristin Lewotsky | Associate Editor (1994-1997)

Kristin Lewotsky was an associate editor for Laser Focus World from December 1994 through November 1997.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!