Nanotomography extends reach of scanning probe microscopy

Nov. 1, 2000
German researchers are developing a method for three-dimensional imaging of very small objects that bears numerous similarities to high-tech medical imaging procedures such as magnetic resonance imaging (MRI) and computed tomography (CT).
Th 1100news01

German researchers are developing a method for three-dimensional imaging of very small objects that bears numerous similarities to high-tech medical imaging procedures such as magnetic resonance imaging (MRI) and computed tomography (CT). Dubbed nanotomography, the method has already achieved record resolution sensitivity in the experimental imaging of synthetic rubber copolymer samples of the poly(styrene-block-butadiene-block-styrene) group.

As with medical tomographic methods, nanotomography produces three-dimensional images through computer reconstruction of data obtained in cross-sectional scans. Unlike CT and MRI, however, nanotomography is invasive. Surface layers are eroded using a beam of oxygen atoms to enable data gathering through subsurface scanning probe microscopy.

Robert Magerle, an investigator at the University of Bayreuth (Bayreuth, Germany) reported that surface layers between 7 and 8 nm in thickness were removed in each of 13 oxygen-beam applications (about 100 nm total) and that a record resolution for volume imaging (10-nm thickness) was obtained using a simple benchtop apparatus.1

In addition to setting a record for fine subsurface resolution, the technique also yielded previously unknown structural information about the specimen. It was already known that polystyrene organized itself into cylindrical domains. But nanotomography revealed a previously unobserved linkage between domains in which one cylindrical polystyrene domain was actually linked to four others (see figure). "This unexpected result demonstrates that real-space volume imaging with SPM offers new information about structures on the nanometer scale, which would be difficult (if not impossible) to obtain with existing techniques," according to Magerle.

Traditional subsurface imaging techniques for small specimens, such as reconstruction from serial sections using transmission electron microscopy and electron tomography, require sectioning the specimen into 10-nm, electron-transparent slices, which poses limitations for curved and rough surfaces and for most nonbiological solid materials.

Secondary ion mass spectroscopy, on the other hand, can handle rough surfaces, but lacks the resolution for detailed observations on the order of nanometers.

"This approach might provide a simple means for nanometer (and even atomic) resolution real-space volume imaging of various materials and physical properties," Magerle wrote. "With the success of SPM in mind, volume imaging by SPM promises new insights into the physics of condensed matter on a nanometer scale."

REFERENCE

  1. R. Magerle, Phys. Rev. Lett. 85(13) 2749 (Sept. 25, 2000).
About the Author

Hassaun A. Jones-Bey | Senior Editor and Freelance Writer

Hassaun A. Jones-Bey was a senior editor and then freelance writer for Laser Focus World.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!