One x 4 InP SOI optical switch replaces passive splitters

May 31, 2013
Eindhoven University of Technology and Ghent University have developed the first bias-free and optically controlled 1 x 4 switch.

Wavelength-division multiplexing (WDM) passive optical network (PON) architectures typically use passive splitters to increase the number of subscribers in a fiberoptic communications system. But unfortunately, users at the same wavelength still need to compete for time-division multiplexing (TDM) time slots, limiting the overall bandwidth of the system. While active optical switches can allow for dynamic bandwidth allocation, PON enclosures are typically located in cabinets where electrical power is not available, ruling out the use of electrically actuated switches. A solution from Eindhoven University of Technology (Eindhoven, The Netherlands) and Ghent University (Ghent, Belgium) is the development of the first bias-free and optically controlled 1 × 4 switch.

The monolithic switch design is basically a silicon-on-insulator (SOI) integrated circuit comprising passive Mach-Zehnder interferometer (MZI) multiplexers and demultiplexers, and a 200 GHz channel spacing arrayed waveguide grating (AWG) post-processed with four membrane indium phosphide (InP) switches (MIPS) and polymer taper waveguides. Typical on-off extinction ratio of the switch is better than 25 dB at most wavelengths and better than 30 dB in the data-signal range of 1550–1560 nm. For the 1 × 4 switch, error-free operation with a penalty of only 0.8 dB was measured using standard telecom data signals. Contact Oded Raz at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!