Efficient one-way optical nanoantenna is also a beam scanner

March 7, 2013
Fed by an optical waveguide, an optical nanoantenna can be used to emit infrared (IR) or visible light in a highly directional manner (just as a radio antenna does for radio waves).

Fed by an optical waveguide, an optical nanoantenna can be used to emit infrared (IR) or visible light in a highly directional manner (just as a radio antenna does for radio waves). However, backreflections originating at the juncture between waveguide and optical antenna sap the efficiency of the configuration. Because scaling the matching-circuit idea for radio antennas down to optical wavelengths is not practical, another approach must be used. Yakir Hada and Ben Steinberg of Tel Aviv University (Tel Aviv, Israel) have come up with a potential solution: a waveguide that ends in a structure that permits only one-way propagation.

The nonreciprocal light transmission happens as a result of the interaction of nonreciprocal optical Faraday (cyclotron) rotation and structural chirality. Faraday radiation occurs when charged particles move in a magnetic field, and so the one-way waveguide contains plasmonic structures (called a subdiffraction chain, or SDC) to which an external magnetic field is applied. For chirality, the researchers design the SDC in a spiral shape (actually a chain of metal ellipsoids spaced 11 nm apart and unidirectionally rotated along the chain). The researchers modeled the structure, showing that a chain length of about three wavelengths produced a directional beam at high efficiency (81% for the antenna itself) for a 0.4 μm wavelength. In addition, changing the strength of the applied magnetic field changed the beam direction, producing a scanner with a 60° deflection range. Contact Steinberg at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!