Mixing phonons with photons in nanophotonic waveguides aids signal processing for computing

March 5, 2015
Demoed radio-frequency photonic device is high power, wavelength insensitive, frequency selective, and narrow linewidth.

Signal processing in integrated photonic circuits is essential to their application in chip-scale computing and sensing devices. Now, researchers from Yale University (New Haven, CT), Sandia National Laboratories (Albuquerque, NM), and the University of Texas at Austin have developed a radio-frequency (RF) processing device for more effective control of information in photonic circuits.1

The device combines coherent photons with phonons (sound quanta) to conduct sophisticated signal processing tasks by harnessing the properties of lower-velocity acoustic waves in the gigahertz range. The gigahertz phonons move at velocities much slower than light, allowing signal processing of light (such as storing, filtering, and delaying) to be done in very small areas.

Frequency-selective RF photonic filter

The researchers transmitted phonons between nanophotonic waveguides via a process called travelling-wave photon–phonon transduction, which led to the demonstration of a high-power, wavelength-insensitive, frequency-selective narrow-linewidth RF photonic filter.

"This is definitely something that's going to be built-upon in the years to come," says Peter Rakich, a Yale assistant professor of applied physics and principal investigator of the research. "It's a very different approach because of its flexibility. We've made something that is smaller as well as lighter, and can go on the same microchip with a processor."

Because the device is small enough to be placed on a silicon chip, it has the potential to be less expensive than other systems. It also has the potential to be adapted to a variety of complex signal-processing designs.

"Our work here is a combination of physics and engineering," says Heedeuk Shin, an associate research scientist in applied physics at Yale, and the study's first author. "We demonstrate a powerful new signal processing operation that isn't possible with photons alone."

Additional authors of the research are Jonathan Cox, Robert Jarecki, and Andrew Starbuck of Sandia National Laboratories, and Zheng Wang of the University of Texas Austin.

Source: http://news.yale.edu/2015/03/05/new-way-control-information-mixing-light-and-sound

REFERENCE:

1. Heedeuk Shin et al., Nature Communications (2015); doi:10.1038/ncomms7427

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!