A team of physicists from ITMO University (St. Petersburg, Russia) and Moscow Institute of Physics and Technology (MIPT; Moscow, Russia) has demonstrated the potential of silicon nanoparticles for effective nonlinear light manipulation that allows transmission, reflection and scattering of incident light in a specified direction, depending on its intensity. These particles can be integrated into microchips that would enable ultrafast, all-optical signal processing in optical communication lines and the next generation of optical computers.
An essential component of any equipment that relies on electromagnetic waves for information transmission and processing is the antenna, which is designed to either receive or transmit signals in a particular direction. It is often the case that incoming signals need to be flexibly processed. This requires the use of a reconfigurable antenna—one whose characteristics (such as its radiation pattern) can be changed in a specific manner during signal processing. One possible solution relies on the use of a nonlinear antenna that can be switched by the incident light itself.
Denis Baranov, a Ph.D. student at MIPT and one of the authors of the study, said, "It is a top priority—and at the same time a major challenge—to develop such tuneable antennas operating at infrared and optical frequencies. Nowadays, we can already transmit information through fibre optics at incredible speeds up to hundreds of Gbit/s. However, silicon-based electronics are unable to process the incoming data at that rate. Non-linear nanoantennas that work at optical wavelengths could help us to resolve this problem and make ultrafast, all-optical signal processing possible."
To demonstrate nonlinear switching, the authors of a paper published in ACS Photonics have studied a dielectric nanoantenna—an optically resonant spherical nanoparticle made of silicon. While spherical particles of all sizes show resonances, it is the size of the particle that determines its resonant wavelength. The first of these resonances, which can be observed at the longest wavelength, is the magnetic dipole resonance. Incident light of a certain wavelength induces a circular electric current in the particle, similar to the current that flows in a closed circuit.
Because silicon has a high refractive index, particles with diameters approaching 100 nm will already show the magnetic dipole resonance at optical frequencies, making them useful for enhancing various optical effects at the nanoscale. The team had already used silicon nanosphere resonances to enhance Raman scattering in an earlier study.
The optical properties of a non-linear silicon nanoantenna are manipulated by means of electron plasma generation. As silicon is a semiconductor, there are almost no electrons in its conduction band under normal conditions. However, exposing it to a laser pulse of high intensity and very short duration excites the electrons into the conduction band. This significantly alters the properties of the material as well as the behaviour of the silicon nanoantenna itself, causing it to scatter light in the direction of the incident pulse. Thus, by exposing a particle to a short and intense pulse, its behaviour as an antenna can be dynamically controlled.
On the basis of the experimental results, the researchers developed an analytical model that describes the ultrafast non-linear dynamics of the nanoantenna examined in the study, as well as the generation and relaxation of electron plasma in silicon. According to the model, a radical change in the scattering diagram of the antenna occurs within a very short period of time—on the order of 100 femtoseconds. Before the pulse arrival, the amount of energy scattered by the particle in the forward direction is nearly the same as in the backward direction. However, driven by a short pulse, the antenna switches to almost perfectly unidirectional forward-scattering. Theoretical predictions backed by the experimental data suggest that an antenna of this kind would have a bandwidth of about 250 Gbit/s, whereas conventional silicon-based electronics rely on components with bandwidths limited to only tens of Gbit/s.
SOURCE: ITMO University and MIPT; http://en.ifmo.ru/en/viewnews/5937/Silicon_Nanoparticles_Trained_to_Juggle_Light.htm
Gail Overton | Senior Editor (2004-2020)
Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.