Optical switch reaches record throughput

March 20, 2000
An optical crossconnect switch that can route any of 112 input channels to any of 112 outputs has been developed by Lucent Technologies.

An optical crossconnect switch that can route any of 112 input channels to any of 112 outputs has been developed by Lucent Technologies. Based on micro-electromechanical systems (MEMS) mirrors, it is "the largest fully functional, fully configured optical crossconnect" yet demonstrated, said David Neilson of Bell Labs (Holmdel, NJ) in a postdeadline paper presented at the 2000 Optical Fiber Communication conference (Baltimore, MD) last March. A microlens array focuses light from input fibers onto a two-dimensional array of MEMS mirrors that can tilt ±5° on each of two axes. Each micromirror bounces the input beam to a fixed reflector that directs it back to another micromirror in the array. That mirror, in turn, reflects the light to the output fiber. Neilson said switching times were less than 10 ms, and insertion loss was 7.5 ±2.5 dB. A major advantage is that the number of active switching elements increases with the port count N, not the number of possible connections N2. "It should be scalable to port counts greater than 1000," said Neilson. By testing the switching array with a 320-Gbit/s data stream at one wavelength, they achieved a switching rate of 35.8 Tbit/s. Contact David Neilson at [email protected].

About the Author

Jeff Hecht | Contributing Editor

Jeff Hecht is a regular contributing editor to Laser Focus World and has been covering the laser industry for 35 years. A prolific book author, Jeff's published works include “Understanding Fiber Optics,” “Understanding Lasers,” “The Laser Guidebook,” and “Beam Weapons: The Next Arms Race.” He also has written books on the histories of lasers and fiber optics, including “City of Light: The Story of Fiber Optics,” and “Beam: The Race to Make the Laser.” Find out more at jeffhecht.com.

Sponsored Recommendations

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Finding the Right Dichroic Beamsplitter

Feb. 26, 2025
Unsure how to select the right dichroic beamsplitter? Explore our selection guide for our wide variety of 45º dichroic beamsplitters.

Measurement of Optical Filter Spectra

Feb. 26, 2025
Learn about the limitations of standard metrology techniques and how Semrock utilizes different measurement approaches to evaluate filter spectra.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!