Gallium phosphide lens attains numerical aperture of 2.0

Jan. 24, 2000
Researchers at Yale University (New Haven, CT) and Digital Instruments (Santa Barbara, CA) have built a solid-immersion-lens (SIL) microscope that reaches a numerical aperture (NA) of 2.0 at visible wavelengths--33% higher than that of oil-immersion objectives and previously reported SILs.

Researchers at Yale University (New Haven, CT) and Digital Instruments (Santa Barbara, CA) have built a solid-immersion-lens (SIL) microscope that reaches a numerical aperture (NA) of 2.0 at visible wavelengths33% higher than that of oil-immersion objectives and previously reported SILs. At the core of the instrument is a hemispherical SIL made of gallium phosphide, which has a refractive index of 3.42 at 560 nm. The lens has a 500-µm radius, is virtually achromatic, and is used in conjunction with a 0.8-NA commercial microscope objective.

When imaging 40-nm fluorescent polystyrene balls at wavelengths of 560, 645, and 720 nm, the device achieves resolutions of 145, 180, and 183 nm, respectively (defined by the full width at half maximum). Deconvolving the object diameter from the measurements results in resolutions of 139, 175, and 178 nm and effective NAs of 2.05, 1.88, and 2.06, respectively. The researchers hypothesize that a 60-nm gap between the balls and the SIL surface prevents the lens from reaching its theoretical NA of 2.50. If made of higher optical quality and used with a 0.9-NA objective, a spatial resolution of 100 nm should be possible with the lens. Contact Qiang Wu at [email protected].

About the Author

Hassaun A. Jones-Bey | Senior Editor and Freelance Writer

Hassaun A. Jones-Bey was a senior editor and then freelance writer for Laser Focus World.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!