Hybrid polymer-silica waveguides provide tunability

May 7, 2001
Air-silica microstructure fibers allow a diverse range of guided-mode properties to be created. The results can produce unique spectral characteristics when long and short-period gratings are written into photosensitive regions. In addition, it is possible to introduce polymers into the air regions to produce hybrid polymer-silica waveguides that allow enhanced tunability of propagation properties.

Paula Noaker Powell

Air-silica microstructure fibers allow a diverse range of guided-mode properties to be created. The results can produce unique spectral characteristics when long and short-period gratings are written into photosensitive regions. In addition, it is possible to introduce polymers into the air regions to produce hybrid polymer-silica waveguides that allow enhanced tunability of propagation properties. One example recently investigated by Lucent Technologies Bell Labs (Murray Hill, NJ) and the Laboratory for Physical Sciences (College Park, MD) is a hybrid polymer-silica microstructure fiber with a UV-induced Bragg grating in the fiber core. A key feature-the large air regions of the fiber-reduces fiber fabrication constraints and simplifies the process of polymer infusion into the air regions.

Despite the lack of circular symmetry resulting from the microstructure, the polymer tuning observed is similar to that seen in standard fiber surrounded by polymers or oils. The polymer is contained only inside the air regions, so the outer air-silica interface is intact, allowing, for example, fabrication of on-fiber thin-film heaters for temperature tuning. According to the researchers involved in the project, the Bragg grating transmission spectrum clearly shows different design regimes in which cladding resonances can be wavelength-tuned, suppressed, or amplitude-tuned. This tunability is possible because of the strong temperature dependence of the polymer refractive index. For more information, contact Paul S. Westbrook at [email protected].

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!