Bridger Photonics selects Boston Micromachines to help assess deformable mirror technology

Jan. 3, 2011
Cambridge, MA--Boston Micromachines Corporation (BMC) signed a consulting agreement with Bridger Photonics to quantitatively assess a new MEMS membrane deformable mirror design.

Cambridge, MA--Boston Micromachines Corporation (BMC), a provider of microelectromechanical systems (MEMS)-based deformable mirror (DM) products for adaptive optics systems, signed a consulting agreement with Bridger Photonics (Bozeman, MT) to quantitatively assess a new MEMS membrane deformable mirror design using Boston Micromachines' facilities.

"We recognized that Boston Micromachines is a world leader in deformable MEMS membranes. The two companies' technologies complement one another very well, so the fit is natural," said Peter Roos, president and CEO at Bridger Photonics. "We are excited to capitalize on BMC's proven expertise and knowledge in the field of deformable mirrors."

Bridger Photonics was awarded a Small Business Technology Transfer (STTR) grant from the National Science Foundation to develop a commercial prototype of an aberration compensated focus control device. This device, based on MEMS technology, will allow the user to deflect a deformable membrane mirror in a controlled manner in order to select a desired focal length. The device also features active control of low-order aberrations. This technology will enable the next generation of biomedical imaging devices for microscopy applications by enabling focus control and aberration correction in a simple, compact and low-cost sensor.

"Progress in deformable mirror technology has inspired innovative researchers to make advances in fields such as astronomy, microscopy, retinal imaging, and laser communication," said Paul Bierden, president and CEO at Boston Micromachines. "We are pleased to provide our extensive DM technology knowledge to Bridger Photonics to support its effort to expand the role of MEMS DM technology in wavefront correction for scientific advancement."

SOURCE: Boston Micromachines; www.bostonmicromachines.com/news_press_bridger.htm

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!