Zero-refractive-index metamaterial at IR wavelength engineered at Columbia University

July 26, 2011
New York, NY--An optical nanostructure or metamaterial with a zero index of refraction was engineered by researchers at the Columbia Engineering School of Columbia University.

New York, NY--Imagine a material in which light propagates from point A to point B without accumulating any phase, spreading through the artificial medium as if the medium is completely missing in space. Such an optical nanostructure or metamaterial with a zero index of refraction and fully controlled light dispersion no longer needs to be imagined: it has been engineered by researchers at the Columbia Engineering School of Columbia University. This is the first time simultaneous phase and zero-refractive-index observations have been made on the chip-scale and at the infrared wavelength.

Published online at Nature Photonics on July 10, the study was led by Chee Wei Wong, associate professor of mechanical engineering, and Serdar Kocaman, electrical engineering Ph.D. candidate, both at Columbia Engineering, in collaboration with scientists at the University College of London, Brookhaven National Laboratory, and the Institute of Microelectronics of Singapore.

"We’re very excited about this. We’ve engineered and observed a metamaterial with zero refractive index," said Kocaman. "What we’ve seen is that the light disperses through the material as if the entire space is missing. The oscillatory phase of the electromagnetic wave doesn’t even advance such as in a vacuum--this is what we term a zero-phase delay."

This exact control of optical phase is based on a unique combination of negative and positive refractive indices. All natural known materials have a positive refractive index. By sculpturing these artificial subwavelength nanostructures, the researchers were able to control the light dispersion so that a negative refractive index appeared in the medium. They then cascaded the negative index medium with a positive refractive index medium so that the complete nanostructure behaved as one with an index of refraction of zero.

"We can now control the flow of light, the fastest thing known to us," said Wong. "This can enable self-focusing light beams, highly directive antennas, and even potentially an approach to cloak or hide objects, at least in the small-scale or a narrow band of frequencies currently."

SOURCE: Columbia University; www.engineering.columbia.edu/prof-wong-makes-telecommunications-breakthrough

Posted by:Gail OvertonSubscribe now to Laser Focus World magazine; It’s free! Follow us on TwitterFollow OptoIQ on your iPhone. Download the free App here

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!